

Volume 52, Issue 1

Editors: B.P. Onac & I.I. Bucur

Proceedings of the European Society for Isotope Research

ESIR IX

Guest Editor

Tudor T_ma_

Cluj-Napoca June 23-28, 2007

An international journal of geology published in Cluj since 1957 ISSN 1221-0803

Molecular and isotopic records of the PermianTriassic transition at the Mt. Velebit, Croatia

Karmen Fio^{1,2}, Jorge Spangenberg¹, Jasenka Sremac², Igor Vlahović³ Ivo Velić⁴, Ervin Mrinjek²

¹Institute of Mineralogy and Geochemistry, University of Lausanne, Switzerland (Jorge.Spangenberg@unil.ch) ²Department of Geology and Paleontology, University of Zagreb, Croatia (karmen.fio@gmail.com) ³ Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Croatia ⁴Croatian Geological Survey, Zagreb, Croatia

During the Middle/Late Permian and Early Triassic, a continuous shallow water deposition took place at the eastern shelf of the Pangaea. Part of these carbonate rocks outcrop today in the central part of the Mt. Velebit, Croatia. The prevailing rock type is dolomite (70 to 99 wt% of CaMg(CO₃)₂), represented by two lithological units: Transitional Dolomite and Sandy Dolomite, with a narrow intercalation of oolithic dolomite in between.

Detailed paleontological, isotopic, organic, and inorganic geochemical studies have been carried out for this section, in order to investigate the environmental changes. Fossil communities show the evidence of two biotic crises, one that coincides with a lithological change in the Upper Permian, and the other accompanied with the pronounced negative shift in ¹³C_{carb} by up to 3‰ (VPDB), which is probably the consequence of global extinction at the Permian-Triassic transition. Upper Permian values for ¹³C_{carb} vary between -0.8 to +2%, with an average of $+1.2\pm0.5\%$, while Lower Triassic values range from -1.3 to +0.9%, with an average of $0.0\pm0.5\%$. At the transition level, ¹³C_{carb} is +1.4 to 0.6%, and on average $0.4\pm1.4\%$. ¹⁸O_{carb} values in the Upper Permian range from -3.2 to -1.3%, with an average of $-2.6\pm0.4\%$, and in the Lower Triassic from -3.2 to -2.2%, with an average of $-2.7\pm0.3\%$. This uniform slow decrease in ¹⁸O_{carb} values is probably due to an enhanced terrigenous input towards the P/Tr transition and in the Lower Triassic. Upper Permian ¹³C for kerogens vary from -27.3 to -24.4%, average $-25.8\pm0.9\%$. The values at the transition level are -

27.0 to -27.1%, and the Lower Triassic values range from -29.1 to -26.4%, with an average of $-27.5\pm0.4\%$. The range of $\sim 4.7\%$ is probably a result of the variations in the primary composition of the organic matter. A constant decrease in the values of ¹³Cker is accompanied with the negative trend of ¹³C for carbonates. The value of ¹³Ckarb-ker shows the same trend as the ¹³Ccarb and ¹³Cker, indicating lower productivity at the Permian-Triassic transition, and a primary source for inorganic and organic signals, with no secondary change. ¹⁵N values for the Upper Permian samples are -0.7 to +8.2%, with an average value of $+3.7\pm2.8\%$, for the transition samples -0.7 to +0.8%, average $0.0\pm1.0\%$, and for the Lower Triassic samples +0.3 to +6.9%, average $+3.8\pm2.0\%$. Altogether, values for the ¹⁵Nker vary between -2.4 and +8.2 %, pointing to a mixed contribution of ¹⁵N-rich marine ($\sim7\%$), mostly in the Upper Permian, ¹⁵N-depleted terrestrial ($\sim0\%$) organic materials towards the transition, and cyanobacteria (-2 to +4 %) at the transition level and in the Lower Triassic.

The distribution of n-alkanes (C₁₃ to C₃₄), acyclic isoprenoids (C₂₁ to C₂₈), hopanes and steranes indicate input of bacterial and algal biomass, however there is no pronounced change between the Late Permian and Early Triassic samples. Odd long-chain n-alkanes (maximazing at C₂₆) and C₃₉ steranes confirm the important contribution of continental debris. Results of compound-specific C isotope analyses of alkanes indicate an increase in ¹³C values after the transition, showing gradual recovery of biota after the extinction event.

Studia UBB, Geologia, 2007, 52 (1), 27-28